Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Environ Res ; 198: 111182, 2021 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1188560

RESUMO

Whether meteorological factors influence COVID-19 transmission is an issue of major public health concern, but available evidence remains unclear and limited for several reasons, including the use of report date which can lag date of symptom onset by a considerable period. We aimed to generate reliable and robust evidence of this relationship based on date of onset of symptoms. We evaluated important meteorological factors associated with daily COVID-19 counts and effective reproduction number (Rt) in China using a two-stage approach with overdispersed generalized additive models and random-effects meta-analysis. Spatial heterogeneity and stratified analyses by sex and age groups were quantified and potential effect modification was analyzed. Nationwide, there was no evidence that temperature and relative humidity affected COVID-19 incidence and Rt. However, there were heterogeneous impacts on COVID-19 risk across different regions. Importantly, there was a negative association between relative humidity and COVID-19 incidence in Central China: a 1% increase in relative humidity was associated with a 3.92% (95% CI, 1.98%-5.82%) decrease in daily counts. Older population appeared to be more sensitive to meteorological conditions, but there was no obvious difference between sexes. Linear relationships were found between meteorological variables and COVID-19 incidence. Sensitivity analysis confirmed the robustness of the association and the results based on report date were biased. Meteorological factors play heterogenous roles on COVID-19 transmission, increasing the possibility of seasonality and suggesting the epidemic is far from over. Considering potential climatic associations, we should maintain, not ease, current control measures and surveillance.


Assuntos
COVID-19 , China/epidemiologia , Humanos , Umidade , Incidência , Conceitos Meteorológicos , SARS-CoV-2 , Temperatura
2.
Front Public Health ; 8: 605128, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-1133991

RESUMO

Background: The current coronavirus disease 2019 (COVID-19) is spreading globally at an accelerated rate. There is some previous evidence that weather may influence the incidence of COVID-19 infection. We assessed the role of meteorological factors including temperature (T) and relative humidity (RH) considering the concentrations of two air pollutants, inhalable coarse particles (PM10) and nitrogen dioxide (NO2) in the incidence of COVID-19 infections in Finland, located in arctic-subarctic climatic zone. Methods: We retrieved daily counts of COVID-19 in Finland from Jan 1 to May 31, 2020, nationwide and separately for all 21 hospital districts across the country. The meteorological and air quality data were from the monitoring stations nearest to the central district hospital. A quasi-Poisson generalized additional model (GAM) was fitted to estimate the associations between district-specific meteorological factors and the daily counts of COVID-19 during the study period. Sensitivity analyses were conducted to test the robustness of the results. Results: The incidence rate of COVID-19 gradually increased until a peak around April 6 and then decreased. There were no associations between daily temperature and incidence rate of COVID-19. Daily average RH was negatively associated with daily incidence rate of COVID-19 in two hospital districts located inland. No such association was found nationwide. Conclusions: Weather conditions, such as air temperature and relative humidity, were not related to the COVID-19 incidence during the first wave in the arctic and subarctic winter and spring. The inference is based on a relatively small number of cases and a restricted time period.


Assuntos
COVID-19 , Clima Frio , Modelos Estatísticos , Tempo (Meteorologia) , Poluentes Atmosféricos , COVID-19/epidemiologia , COVID-19/transmissão , Finlândia/epidemiologia , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Temperatura
4.
Sci Total Environ ; 728: 138778, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: covidwho-620566

RESUMO

COVID-19 has become a pandemic. The influence of meteorological factors on the transmission and spread of COVID-19 is of interest. This study sought to examine the associations of daily average temperature (AT) and relative humidity (ARH) with the daily counts of COVID-19 cases in 30 Chinese provinces (in Hubei from December 1, 2019 to February 11, 2020 and in other provinces from January 20, 2020 to Februarys 11, 2020). A Generalized Additive Model (GAM) was fitted to quantify the province-specific associations between meteorological variables and the daily cases of COVID-19 during the study periods. In the model, the 14-day exponential moving averages (EMAs) of AT and ARH, and their interaction were included with time trend and health-seeking behavior adjusted. Their spatial distributions were visualized. AT and ARH showed significantly negative associations with COVID-19 with a significant interaction between them (0.04, 95% confidence interval: 0.004-0.07) in Hubei. Every 1 °C increase in the AT led to a decrease in the daily confirmed cases by 36% to 57% when ARH was in the range from 67% to 85.5%. Every 1% increase in ARH led to a decrease in the daily confirmed cases by 11% to 22% when AT was in the range from 5.04 °C to 8.2 °C. However, these associations were not consistent throughout Mainland China.


Assuntos
Infecções por Coronavirus/transmissão , Umidade , Pneumonia Viral/transmissão , Temperatura , Betacoronavirus , COVID-19 , China/epidemiologia , Humanos , Modelos Teóricos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA